If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2n^2+41n+1=10n+9
We move all terms to the left:
2n^2+41n+1-(10n+9)=0
We get rid of parentheses
2n^2+41n-10n-9+1=0
We add all the numbers together, and all the variables
2n^2+31n-8=0
a = 2; b = 31; c = -8;
Δ = b2-4ac
Δ = 312-4·2·(-8)
Δ = 1025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1025}=\sqrt{25*41}=\sqrt{25}*\sqrt{41}=5\sqrt{41}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(31)-5\sqrt{41}}{2*2}=\frac{-31-5\sqrt{41}}{4} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(31)+5\sqrt{41}}{2*2}=\frac{-31+5\sqrt{41}}{4} $
| 40=8t-13t | | 8w-19w=-99 | | 3x(5x+5)=3(5x+5) | | 7+2x=-3-1 | | √7v-2=√4v+10 | | 2k^2-8k-36=6 | | 5h+1=7h-23 | | 7w-13w=12 | | 2x+4x=5-7 | | 48=-16t^2+56t | | 2x+28+8=x+26 | | 9x+6=11x+10 | | 13x-23-45=7x+12 | | 7x8=8x7 | | 8(9+3f)+f=0 | | 8x-10=6x-6 | | x+16+x+15=19 | | m/11=20+9m | | x=5250 | | 3w-9=4+7w | | 53x^2=2240 | | 2x+18+2x+23=9 | | H(t)=-5t^2+50t+6 | | a^+3a=1 | | 3(8+a)+7(6+4a)=0 | | 1/2x-2/3=3/4x+1/12 | | |4u+10|=2 | | ×^2+6x+7=0 | | 5(6x+2)-3(9x-7)=0 | | 2^3-2x=8 | | (n-2)(4n+3)=0 | | 800=18t-5t^2 |